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A "double-impolse" model of a clock with a single degree of freedom and one counter impulse and one pushing impulse in the 
period is constructed. A non-linear oscillator with a "natural period", which is analytic with respect to damping and a restoring 
force, is considered as the oscillatory system of the clock. In the model proposed, the trajectory which "enters" the stationary 
point after a finite time plays a decisive role in the possibility of realizing the hard mode of self-excited oscillations which is 
customary in the case of real clocks. © 1998 Elsevier Science Ltd. All rights reserved. 

It is well known [1, 2] that any clock mechanism consists of three units: an oscillator in the form of a 
pendulum or a balano-, wheel, a winding mechanism, which is the source of energy, and an escapement 
unit which connects the winding mechanism with the oscillator and transmits the appropriate impulses 
to the latter. One of the principal requirements imposed on the construction of modern dock  mechan- 
isms with an oscillator which has a "natural period" is the requirement of isochronism of the natural 
modes of the oscillator which enable oscillations of possibly greater amplitude to be maintained in the 
running of the clock which are less susceptible to the effect of external dynamic actions [2]. 

Types of non-linear dynamic models of docks with impulses, which have not been considered 
previously, when the oscillator is analytic and has a "natural period", that is, oscillations can be executed 
when the escapement unit is disconnected, are constructed below. Such clock models can be used to 
develop new designs for mechanism which ensure the accuracy in the running of a clock with a hard 
mode of self-excited oscillations. 

1. A LIlY',NARD O S C I L L A T O R  OF D A M P E D  N A T U R A L  M O D E S  

The equation of motion of an oscillator with a "natural period" and a single degree of freedom, which 
is used in clock models, is given in general form by the relation 

)i+ f ( x ,  x ) + g ( x ) = O ,  g ( x ) = x + g o ( x  ) 

We shall concentrate on the treatment of an oscillator called a Li6nard oscillator which is described 
by the equation 

+ f(x)~+ g(x) = 0 (1.1) 

where the non-linear "coefficient" of friction f(x) and the non-linear component of the restoring force 
go(x) are holomorphic in any range of variation of the independent variable x of the function such that 
f(O) = O, f (x )  > O when x ~ 0 and g0(0) = 0 and xg(x) > O when x g 0. 

With these assumptions, the sole finite stationary point O (0, 0) of the corresponding oscillator (1.1) 
of the dynamical sysW.m 

~. = y, y = -g(x)  - f ( x ) y  (1.2) 

will be the stable focus. 
With respect to this focus, we shall assume that the spirals, along which the representative points 

move in a clockwise direction as t increases, completely fill the whole of the phase plane xOy. 

tPrikl. Mat. Mekh. Vol. 62, No. 1, pp. 92-99, 1998. 

87 



88 V.V. Amel'kin and B. S. Kalitin 

It has been noted above that one of the fundamental demands made on clock mechanisms involves 
the requirement that the natural modes of the oscillator should be isoehronous [3], 

If we introduce the idea of a strongly isochronous oscillator, for which the "half-period" of the 
vibrations in the half-plane x I> 0 of the phase plane is the same as the "half-period" of the oscillations 
in the half-plane x ~< 0 of the phase plane, it is then obvious that the accuracy of the running of a clock 
with such an oscillator can only be increased. 

The mathematical aspects of this issue are as follows. If one makes use of the previously proposed 
mode of reasoning [4] and one of the results [5, Theorem 4], it can then be shown that the following 
theorem holds. 

Theorem 1.1 In order that a high degree of isochronism of the oscillations should occur in the case 
of the dynamical system 

= - y - X ( x , y ) ,  ) = x + Y ( x , y )  

where the functions X and Y, which are holomorphic in the neighbourhood of the point O (0, 0), do 
not contain free and linear terms, the existence of a unique transformation 

u=x ,  v = y +  ~ ~ktxky I (1.3) 
k+l=2  

which converts the dynamical system being considered into a system of the form 

u = - v + u  ~,Y.,v u*v", i ,=u+v  ~.y, ,  u*v" (1.4) 
$+v=t $+v=l 

is necessary and sufficient. 
It can then be immediately verified that, if 

x3 go(x = [! sY(s ds] 2 (1.5) 

then a change of the time t = -4 and a transformation of the form of (1.3) 

u=x ,  v = y + x ~ o ( X ) / X  

converts the corresponding oscillator (1.1) and the dynamical system (1.2) into a system of the form 
of (1.4) 

In accordance with Theorem 1.1, the last statement means that the oscillator (1.1) is strongly 
isochronous, subject to condition (1.5). 

We note here that, in accordance with Theorem 1.1, condition (1.5) is not only sufficient but also a 
necessary condition for the strong isochronism of the oscillations of a Litnard oscillator (1.1). 

We will now investigate certain other properties of oscillator (1.1). 
We consider an arbitrary spiral S from the family of spiral-trajectories of system (1.2), which leaves 

from an arbitrary point on the positive semi-axis of the ordinate in the phase plane and completes a 
single turn around the stationary point. Suppose that the spiral intersects the positive and negative semi- 
axes of the abscissa in the phase plane at the points ~ and rl, respectively and that 

),~=y(x, ~), z~=z(x,  ~), where 0 < x <  

z n = z(x, rl), .~'n = y(x, q), where 11 <_ x _< 0 (1.6) 

are the equations of the arcs of the spiral S located in the first, fourth, third and second quadrants, 
respectively. 
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Next, suppose that  

'~(x, ~)=y(x, ~)+z(x, ~), 

0(~, ~) = 0(~, 11) = 0 

• (x, "q)= y(x, r l )+z (x ,  rl) 

Lemma 1.1. The  inequalities 

• (x, ~ ) > 0 w h e n  0 < x < ~ ,  ~ ( x ,  11)<0 when r l < x < 0  (1.7) 

hold. 

Proof. We will prove the validity of the first inequality of (1.7). The feasibility of the second inequality is proved 
in a similar way. When aca:ount is taken of the notation adopted, we have 

d~p(x, ~) = - 2 f ( x ) -  g(x) ~(x, ~), 0 <_ x < ~ (1.8) 
dx y~ z~ 

According to the assumption that f(x) > 0 when x ~ 0, it therefore follows from (1.8) that subintervals cannot 
exist in the interval (0, ~]1 in which O(x, ~) --- 0. Bearing this in mind, we shall assume that the first of inequalities 
(1.7) is not satisfied. Then, by virtue of the preceding discussion, this will mean that an interval [~1, ~2] C (0, ~] 
must necessarily exist such that 

• (x, ~ )<0  when ~l <x<~2  and O(~2, ~)=0 (1.9) 

lies in the interval (0, ~). 
On integrating Eq. (1.8) within the limits from ~1 to ~2 and taking account of (1.9), we arrive at the inequality 

~(~2, ~) - O(~1, ~) < 0 from which it follows that ~(~1, ~) > 0. But the inequality obtained contradicts relation 
(11.9). Hence, the function ~(x, ~) is strictly positive when 0 < x < ~. 

In order to complete the proof it remains to show that ~(0, ~) > 0. Actually, if this inequality is not satisfied, 
it is obvious that ~(0, ~) = 0 and, then, by choosing a sufficiently small number e(0 < e < ~) and integrating 
Eq. (1.8) from 0 to e, we arrive at the equality 

O(e, ~)=h(-~, ~) (~(O, ~)-2~f(x)h(x, ~)dx), 
o 

which, when account is taken of the fact that at ~(0, ~) = 0, leads to the impossible inequality ~(0, ~) <~ 0. 
This proves the lemma. 

Now suppose that  

H1(x, ~, ~) :=y(x ,  ~)-y(x ,  ~), 

Ht(x, "il, ~ ) =  y(x, rl)-y(x,  ~), 

H2fx, ~, ~)=zfx, 

H2(x, 11, ~)= 

~) -  z(x, ~), where  0 < x < ~ < 

=z(x, ~ ) - z ( x ,  r l ) , w h e r e ' q < ~ < x < 0  

Lemma 1.2. The  inequalities 

/h(x)~-H~(x, ~, ~)-H2(x,  ~, g ) > 0  when 0 < x < ~ < g  
(1.10) 

hold. 
A2(x)~Hl(x, rl, ~ ) - H 2 ( x ,  11, ~ ) < 0  w h e n : ' q < ~ _ _ _ x < 0  

Proof. We will prove that the first of inequalities (1.10) holds. The feasibility of the second inequality is proved 
in the same way. Thus, at the point x = ~, the left-hand side of the first relation in (1.10), represented in the form 
AI(~) = y(g, ~) + z(~, g), is strictly positive, by Lemma 1.1. It follows from the continuity of the functions/-/1 and 
/-/2 with respect to the variable x that the left-hand side of the first relation of (1.10) is also strictly positive for x 
< ~ only if the difference ~ - x is sufficiently small. Then, if the first of inequalities (1.10) does not hold in the 
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interval 0 <~ x <~ ~ < ~ a point x* must exist, lying to the left of ~, such that Al(x) > 0 when x* < x <~ ~ but 
Al(x*)  = O. 

We have 

ax [ y~ y~ 
1 < g(x) Ai (x) 

z~ z~ ) y~ y~ 
(1.11) 

where 0 ~< x < ~ since, by Lemma 1.1, lYgl > Izgl and, consequently, y~y~ > z~zg. 
Integrating inequality (1.11) fromx* + ~ tox, where e > 0 andx* < x < ~, we obtain the inequality 

In. ~ .< Jx g(S) ds 
AI(X +e) x+~Y~Y~ 

which becomes contradictory when e ~ 0 by virtue of the boundedness of the right-hand side. The resulting 
contradiction proves the lemma. 

2. A M O D E L  OF A C L O C K  W I T H  C O U N T E R  AND P U S H I N G  I M P U L S E S  

Consider a clock mechanism with a strongly isochronous Li6nard oscillator (1.1). We will assume 
that the escapement transmits instantaneous impulses to the oscillator by means of a counter impulse 
in a direction opposite to the motion of the oscillator, leading in its interpretation in the phase plane 
to an instantaneous increase in velocity at a certain constant value ofLs  > 0 and a pushing impulse in 
the direction of motion of the oscillator which leads to an instantaneous increase in the velocity at a 
constant value of L2 > L1. It is assumed here that the transmission of the impulse (jump) is only 
performed once in the equilibrium position at a non-zero rate of change in the amplitude, that is, at 
the instant when x = 0, y ~ 0. 

In this case the mathematical model can be written in the form 

Jc=y 

= - g ( x ) -  f ( x ) y  + 2(la + I., z (1_,2 - I a )sign(y))8(x) (2.1) 

where ~i(x) is the Dirac delta-function. 
The subsequent investigations involves a consideration of the possible types of motions in the case 

of pulsed system (2.1). 

3. P E R I O D I C  O S C I L L A T I O N S  OF SYSTEM (2.1) W I T H  A S I N G L E  
J U M P  IN THE H A L F - P E R I O D  OF THE O S C I L L A T I O N  

P E R I O D  OF THE O S C I L L A T O R  

Suppose that 

n(x ,  ~) = y(x, ~ ) -  z(x, ~), where 0 < x ___ 

Then, by virtue of the property of the continuous dependence of the solutions of the initial equations 
on the initial data and the fact that the spiral-trajectories of system (1.2) completely fill the phase plane, 
it can be confirmed that the function H(0, ~), where ~ ~> 0, increases strictly monotonically 
when ~ ---> +.~ and that H(0, ~) ---> +oo. Hence, a unique solution ~0 of the algebraic equation L1 = 
H(0, ~), defined by the equality ~ =/-/-X(Lx), exists for any value of L1 > 0. This solution obviously 
corresponds to periodic oscillations of system (2.1) with a single jump in a half-period of the oscillation 
period of the oscillator to which, in turn, there are corresponds an orbitally asymptotic stable limiting 
cycle. 

We shall now prove the last point. We puty0 = y(O, G0), Zo -- z(O, ~), assuming, for brevity, that the symbolsyo, 
z0 (as well as symbols similar to them later) denote points on the x ffi 0 axis with values on the ordinates corresponding 
to the symbols. 
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Suppose that, using this notation, a contour 

0'o, -% y0) 
corresponds to periodic oscillations in the phase plane, that is, a discontinuous trajectory of system (2.1) which 
passes through the points Y0, ~,  z0 (the arrow denotes a jump from a point with ordinate z0 to a point with ordinate 
Y0 such that Iz0 -Y01 = Lt). 

If one now chooses a point with ordinate Yl, where Yl = y(O, ~1), ~ < ~1 and Y0 < Yl, as the initial state in the 
neighbourhood of y0, it follows from Lemma 1.2 that the sequences of points (Yk)k ;. 1, (zk)k ;. 1, which correspond 
to the position of the representative points after each jump along the ordinate axes, will satisfy the chains of 
inequalities 

Yl >Y3 >Y5 >.-- >Y0 > .-. >Y6>Y4>Y2 

2 2 > Z 4 >Z6>... >Z O> ... > Z 5>z 3 > Z I (3.1) 

If, using the same notation, Yl < Y0, we shall have chains of inequalities which differ from (3.1) by interchange 
of the symbols y *-~ z. 

Hence, for any initial state of a representative point in the neighbourhood of y0, the sequence of its ordinates 
on the line x = 0 monotonically approaches Y0 from two sides on the positive semi-axes and z0 on the negative 
semi-axis of the same axis. It can be shown in a similar way to the result obtained previously ([6, Theorem 1]; see 
also [7]) that such a monotonic approach will be an asymptotic convergence to a limiting cycle with a single jump 
in the half-period of the oscillation period of the oscillator. 

The following theorem therefore holds. 

Theorem 3. For any value LÀ > 0, system (2.1) has a unique orbitally asymptotically stable periodic 
motion with a single jump per half-period of the oscillation period of the oscillator. 

Remark 3.1. The attraction domain of the limiting cycle of system (2.1) with a single jump in a half-period of 
the oscillation period of the oscillator is completely determined by the hehaviour, when t --* _+ 0% of the trajectories 
in the neighbourhood of the trajectory which "enters" the stationary point after a finite time. This trajectory always 
exists in the case of (2.1) and has no analogue in the theory of continuous dynamical systems. This domain can be 
both finite and also contain points located in an infinite part of the phase plane. 

4. A T R A J E C T O R Y  " E N T E R I N G "  A STATIONARY P O I N T  
A F T E R  A F I N I T E  T I M E  

It is well known that, in a continuous dynamical system with the property of uniqueness of the solutions, 
a representative point, moving along trajectories of the system, can "enter" the stationary point from 
any regular point of the phase plane only when t --> +oo or t - ,  --oo. As far as system (2.1) is concerned, 
it always has a trajectory which "enters" the stationary point after a finite time (after a finite number 
of jumps). Actually, the trajectory which reaches the negative semi-axis of the ordinate axis at a point, 
the ordinate of which is equal to -L1, is the trajectory of system (2.1) which "enters" the stationary 
point after a finite time. 

We will now show how the attraction domain G of the limiting cycle Twith a single jump in a half- 
period of the oscillation period of the oscillator changes, depending on the location of the trajectory 
F which "enters" the stationary point of system (2.1). We will use the notation y_L1 = y(0, ~L~)where 
the value of Y-L1 is always greater than L v 

Theorem 4.1. Ify_L, > L 2, then G = R2\F, where F has points outside a circle of any radius with its 
centre at the stationary point. 

Proof. We construct sequences of intervals Ik and Jk (k = 1, 2 . . . .  ) on the ordinate axes when y > 0 
andy < 0, respectively, in the following way. We put/1 = (L2, Y-L1),/2 = (0, Y-L~ --L2). Then, on taking 
account of the fact that the lengths of the intervals/1 and/2 are equal, we arrive at the conclusion that 
the representative points which move, as the time t increases, in the half-plane x < 0 along trajectories 
which border on points of the interval J2, find themselves, after reaching the ordinate axes and jumping 
upwards by an amount L2, at points of the interval I1. If, however, one considers the motion of repre- 
sentative points which have been noted in the reverse direction, then a single-valued mapping of the 
interval I1 --> I2 will correspond to such a motion of these points for which points of the interval I2, 
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which do not belong to the trajectories of (2.1) will correspond to points of  the interval/1, which do 
belong to the trajectories of system (2.1). Now, on noting that the trajectories of system (2.1), which 
leave from points of the interval J2 = ( zz, 0) of the ordinate axis, where z (2) = z(0, T12), are adjacent to 
points of the interval I2 by Lemma (1.2) we arrive at the conclusion that to points of  the interval I2, by 
Lemma (1.2) we arrive at the conclusion that IJEI > 112 I. Here, after a jump upwards by an amount L1, 
the representative points of system (2.1) find themselves in the interval J2. It is therefore possible to 
speak of a mapping of  the intervals J2 and J3 which are equal in length, where J3 = (z(2) - L1, L1). In 
the case of such a mapping, points in the interval J3 which do not belong to the trajectories of  the system 
being considered, correspond to points in the interval J2, which do belong to the trajectories of system 
(2.1). Furthermore, the interval 13 = (y_£~,y_(z(2)_£0) corresponds to the interval J3 such that every point 
belonging to the interval 13, on starting to move along the trajectories of system (2.1) in the half-plane 
x > 0 as the time t increases, will be adjacent, at a certain instant of time, to a point of the interval J3. 
Using this type of motion, the one-to-one mapping of the intervals J3 and 13 is determined and, by Lemma 
1.2, the inequality I J31 > 1131 will hold. 

Using similar reasoning, sequences of intervals Ik, Jk (k = 1, 2 . . . .  ) can be constructed such that 

IIil=l121<lJ21=lJ31<l131=l141<lJ41=lJ51< ... (4.1) 

These intervals fill the whole of the ordinate axis with the exception of a denumerable set of points 
which correspond to the ends of the intervals and where intervals with even subscripts contain the points 
of the trajectory of system (2.1), while the points of the intervals with odd subscripts do not belong to 
the trajectories. 

When account is taken of what has been said, relations (4.1) mean that the attraction domain G of 
the limiting cycle "t coincides with the whole phase space, with the exception of  trajectories F having 
points outside a circle of arbitrary radius with its centre at the stationary point, any representative point 
of which, after a finite time, occurs at the origin of the system of coordinates. The theorem is proved. 

As far as the cases Y-LI = LE and Y-L~ < LE are concerned, when the inequality Y-LI < L2 is taken 
into account, we also conclude, by Lemma 1.2, that the following two assertions hold. 

Theorem 4.2. Ify_L1 = L2, the attraction domain G of the limiting cycle "/is finite and bounded by 
the contour 

(L2, ~--L,, - L1 "~ 0, L2). 

Each representative point outside the domain G asymptotically approaches a finite trajectory F when 
t ----> +oo. 

Theorem 4.3. Ify_L1 < L2, the attraction domain G of the limiting cycle y is finite and bounded by 
the contour 

( Y - L I  , ~ - L 1  , - -  L I -~ O, Y-L1)" 

Each representative point outside the domain G, lying in a sufficiently small external half-neighbour- 
hood of F, asymptotically approaches a finite trajectory F when t ~ --00. 

Remark 4. It follows from Theorems 4.1-4.3 that system (2.1) can execute periodic oscillations with two jumps 
in a period solely in the case wheny_Li < L2 

A geometrical interpretation in the plane of the parameters LI and L2 can be given (Fig. 1) for all situations 
described by the last three theorems. Here, the domain between the half-line L1 = L2 and the curve L2 = Y-L, 
corresponds to the case described in Theorem 4.1. The points of the curve L2 = Y-L1 correspond to the case described 
in Theorem 4.2. Finally, the domain between the positive semi-axis L1 = 0 and the curve L2 = Y-L1 (the hatched 
area) corresponds to the case described in Theorem 4.3. 

5. P E R I O D I C  O S C I L L A T I O N S  W I T H  T WO J U M P S  IN A P E R I O D  

Suppose that a representative point which leaves from the point y+ goes around the contour 

(y+, ~, z+ ~ )z_, rl, y_) (5.1) 
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tz  ze__y_,1 

0 L1 

Fig. 1. 

where y+ = y(0, ~), z+ = z(0, ~), z_ = z(0, rl), y_ = y(0, 11) along trajectories of  system (2.1) and, as 
previously, the arrow indicates a jump from the point z÷ to the point z_ at a distance equal to L1. 

We shall call such a contour a link which is obviously defined by just a single parameter ~ > ~LI" 
We put Y(~) = y+ -y._ ---- y(0, ~) -y(0,  rl(~)). Then, if, for a certain value of ~ = ~* > ~-L1, the magnitude 

of the jump L2 on the positive semi-axis of the ordinate axis coincides with Y(~)*, then the link closes 
itself and will correspond to a periodic self-excited oscillatory motion of system (2.1) with two jumps 
in a period. 

Under  a certain condition such a closed link always exists and is unique. 
In fact, suppose thai: the link (5.1) corresponds to the point ~ > ~t.1 and that the link 

h >z_, n,Y_) 

corresponds to the point ~ < ~. 
We will now estimate the increment AY = Y(~) - Y(~). Using Lemma 1.2, we have 

AY> ( y + - y + ) - ( ~ _  - z _ ) > O  

since z _  - z _  = z +  - z ÷ .  

Hence, Y(~) > Y(~) when ~ > ~, that is, Y(~) is a function which increases strictly monotonically. 
This fact, the equality Y(~-I)  = y(0, ~t.1) and arguments, analogous to those used in proving the orbital 
asymptotic stability of a periodic motion with a single jump in a half-period of the oscillation period 
of the oscillator, lead to the conclusion that the following theorem holds. 

Theorem 5.1. The condition 

Y-4 </-2 < s u p r ( ~ )  

is necessary and sufficient for system (2.1) to have a unique orbitally asymptotically stable periodic motion 
with two jumps in a period corresponding to the periodic self-excited oscillations of the dynamic clock 
model. 

Remark 5.1. A periodic motion with two jumps in a period always exists if the difference L 2 -y(0, ~Lt) is sufficiently 
small. 

Remark 5.2. It is obvio~as that 

y_~ = y(0, z -~ (-I .1))  

where z -l is a mapping which is the inverse of z. The value of Y-L1 c a n  also be found as a root of the equation 
x(y(0, ~L~)) = 0, where x is the solution of the equation 
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Y 

.F 
- L f  

F 

S 
Fig. 2. 

~//dy=-Y/((g(x)+f(x)y) 

which satisfies the initial condition x(0) = -L1. 

Theorem 5.2. The period of the self-excited oscillations of the dynamic clock model (2.1) is identical 
with tile period of the isochronous oscillations of the Li6nard oscillator (1.1). 

The validity of the theorem follows from the property of strong isochronism of the oscillations of 
the oscillator (1.1) and the instantaneous nature of the impulses which are transmitted by the escapement 
to the oscillator. 

Remark 5.3. When the conditions of Theorem 5.1 are satisfied, the mutual arrangement of  the limiting cycle 
with a single jump in a half-period of the oscillation of the oscillator Y, of the limiting cycle with two jumps in a 
period F* and the trajectory which "enters" the stationary point after a finite time, F, is shown in Fig. 2. 

Remark 5.4. I f a  model which is described by system (2.1) with a strongly isochronous periodic Li6nard oscillator 
(in this case the function f(x) is odd) is chosen as the dynamic model of a clock, then Theorems 3.1, 4.1, 4.2, 4.3, 
5.1 and 5.2 also hold for such a model. 
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